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1. Introduction

The stability of the weak scale against radiative corrections from higher scales is a mystery.

While the puzzle itself is conceptual, virtually all proposed solutions involve new particles

and interactions at the weak scale, providing rich collider phenomenology to be explored at

the Large Hadron Collider (LHC). Since the reach of the LHC is limited to about 5 TeV,

it is important to explore theories of new physics which can stabilize the weak scale up to

these energies, and lead to interesting collider signals. Several interesting mechanisms have

recently been proposed, including little Higgs theories [1, 2], twin Higgs theories [3, 4], and

folded supersymmetry [5].

In this paper we propose a new class of models that stabilize the weak scale up to and

beyond the energies probed by the LHC, and which give rise to exotic collider signatures.

These theories are based on the following observation. In conventional supersymmetric

theories such as the Minimal Supersymmetric Standard Model (MSSM), the quadratically

divergent contributions to the squared Higgs mass in the Standard Model (SM) are can-

celled by the superpartners. However, while this cancellation relies on the couplings of the
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superpartners to the Higgs, conventional supersymmetric collider phenomenology actually

depends more critically on the fermion-sfermion-gaugino couplings, through which most

superpartners decay. Since the latter interactions do not play a role in stabilizing the Higgs

mass at one loop, the relationship between supersymmetric naturalness and supersymmet-

ric phenomenology at LHC energies is somewhat indirect.

This observation then begs the following question. Do there exist consistent effective

field theories that exhibit supersymmetric spectra and stabilize the weak scale up to the

energies probed by the LHC, but where the fermion-sfermion-gaugino vertices are absent?

Such theories could in general give rise to collider signatures that are completely different

from those of conventional supersymmetric models!

In this paper we construct one realization of such a scenario where supersymmetry,

in combination with a set of discrete symmetries, stabilizes the weak scale even in the

absence of the fermion-sfermion-gaugino vertices. These discrete symmetries lead to robust

phenomenological consequences. In particular, several superpartners become stable or

quasi-stable on collider time scales, their decays effectively happening in slow-motion. This

opens the door to the exciting possibility of directly observing several of the superpartners

in the LHC detectors.

This particular realization borrows from the ideas of folded supersymmetry [5], but

the phenomenology of that case [6] (see also [7]) is very different. For every quark or lepton

superfield in the MSSM, consider adding to the theory an additional chiral superfield with

exactly the same gauge quantum numbers. We give the MSSM fields a subscript A to

distinguish them from these new fields to which we give a subscript B. We impose the

following three Z2 symmetries: ZAB
2 which interchanges the A and B fields, ZA

2 and ZB
2

which flip the sign of the A and B fields, respectively. Then the up-type Yukawa couplings

in this theory take the form

∫
d2θ yu(HuQAUA +HuQBUB) (1.1)

where Hu denotes the up-type Higgs, Q the SU(2) doublet quarks and U the SU(2) singlet

anti-quarks. The discrete symmetries have ensured the equality of the A and B Yukawa

couplings and the absence of mixing between A and B. The one-loop quadratic diver-

gences to the squared Higgs mass from the fermions are cancelled by loops involving the

corresponding superpartners.

This theory also has a ZF
2 symmetry under which all fermions are odd and all bosons

even. We now construct a new theory (the “daughter” theory) from this theory by project-

ing out all states that are odd under the combined ZA
2 ×ZF

2 symmetry. Then the daughter

theory only contains the SM fermions from A, the scalars from B, and the gauge bosons.

The scalars from A, the fermions from B and all the gauginos have been projected out.

We refer to the scalars from B as the pseudo-sfermions of the SM fermions from A. The

pseudo-sfermions have the exactly same quantum numbers as the true sfermions, but do

not form supermultiplets with the SM fermions. In particular, the pseudo-sfermions do

not have a vertex with the SM fermion and the gaugino. Therefore, the daughter theory

is fundamentally non-supersymmetric. Furthermore, ZAB
2 is also broken. However, pro-
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vided that the form of (1.1) can be justified, the one-loop quadratic divergences to the

squared Higgs mass from the Yukawa couplings are still cancelled, but now between the

SM fermions in QA and UA and the pseudo-sfermions in QB and UB .

Of course the daughter theory by itself does not possess any symmetry that can ensure

the equality of the A and B Yukawa couplings necessary for these cancellations to go

through. Therefore it must emerge as the low energy limit of some other theory where the

equality of these couplings is a consequence of a symmetry. Furthermore, since gauginos

are required to cancel quadratic divergences from gauge loops, they must be reintroduced

at some level, but without reintroducing fermion-pseudo-sfermion-gaugino vertices. In the

next section we shall give an explicit example of such a construction.

Remarkably, some phenomenological aspects of this scenario are already clear. The

theory possesses a ZB
2 parity symmetry under which all the pseudo-sfermions are odd.

Therefore the lightest pseudo-sfermion is stable. Furthermore, notice that the B sector has

its own conserved baryon number, and also three conserved lepton numbers (neglecting

the neutrino masses). Therefore, the lightest pseudo-sfermion with any of these quantum

numbers is necessarily stable. In order to avoid conflict with the observational bounds

on stable charged particles [8 – 10], these conservation laws cannot be exact. Since it

is technically natural for the breaking to be small, these pseudo-sfermions can be long-

lived or stable on collider time-scales. Therefore this scenario can give rise to spectacular

signatures involving displaced vertices and stable exotics at the LHC.

2. A model

Here we present a concrete model which realizes the features presented above, and con-

stitutes an existence proof of the scenario. The model provides a complete self-consistent

description up to and beyond LHC energies, and serves as a useful benchmark for the study

of collider phenomenology.

2.1 Fields and symmetries in the bulk

In this subsection, we focus on the physics in the bulk. The fields and symmetries at

the boundaries will be discussed in section 2.2. We take the bulk to be a 5D Minkowski

space with the 5th coordinate x5 ≡ y restricted to an interval 0 ≤ y ≤ πR, where R−1

is taken to be in the 5-10 TeV range. We also assume that the bulk has 5D N = 1

supersymmetry (SUSY).

All SM fields except the Higgs live in the bulk. (The Higgs will be located on the

boundary at y = 0.) The 5D gauge supermultiplets are denoted by (AaM , λa, λ
c
a, σa),

where a = 1, 2, 3 refer to U(1)Y, SU(2)L and SU(3)C respectively. Here, AM corresponds

to the SM gauge field, λ and λc to the gauginos, and σ to the adjoint scalar which completes

the 5D gauge supermultiplet. In accordance with the scenario outlined above, the matter

fields are doubled and we label them as qip, uip, dip, ℓip and eip (all being left-handed Weyl

spinors), where p runs over A and B, and i = 1, 2, 3 refer to the three generations. They

form supersymmetric hypermultiplets with the fermions qc
ip, u

c
ip, · · · in the corresponding

conjugate representations and the scalar partners q̃ip, ũip, · · · , q̃c
ip, ũ

c
ip, · · · . These fields
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are collectively referred to as ψip, ψ
c
ip, φip, φ

c
ip, respectively. By definition the SM fermions

are the zero modes of ψiA.

The bulk N = 1 SUSY possesses an SU(2)R symmetry under which (φip, φ
c∗
ip ) and

(λa, λ
c
a) transform as doublets. For our purposes, it is important to distinguish two different

ways of embedding 4D N = 1 multiplets into a 5D N = 1 multiplet. One embedding —

the “unprimed SUSY” — is Φip = (φip, ψip) and Φc
ip = (φc

ip, ψ
c
ip), while the other — the

“primed SUSY” — is Φ′
ip = (φc∗

ip , ψip) and Φc′
ip = (−φ∗ip, ψc

ip). Similarly, we can have

Va = (Aaµ, λa) and Σa = (σa + iAa5, λ
c
a), or V ′

a = (Aaµ, λ
c
a) and Σ′

a = (σa + iAa5,−λa).

The SU(2)R symmetry renders irrelevant whether we use the unprimed or primed basis in

the bulk, but the distinction will be important at the boundaries.

We require the bulk Lagrangian to possess the following Z2 symmetries.

ZA
2 : ΦiA → −ΦiA , Φc

iA → −Φc
iA . (2.1)

ZB
2 : ΦiB → −ΦiB , Φc

iB → −Φc
iB . (2.2)

ZAB
2 : ΦiA ↔ ΦiB , Φc

iA ↔ Φc
iB . (2.3)

Z ′AB
2 :

{
Φ′

iA ↔ Φc′
iB , Φ′

iB ↔ −Φc′
iA ,

V ′
a ↔ −(V ′

a)
T , Σ′

a ↔ −(Σ′
a)

T .
(2.4)

Note that ZAB
2 and Z ′AB

2 together forbid bulk masses for the matter fields.

2.2 Fields and symmetries at the boundaries

Having described the bulk fields and symmetries, we now introduce the boundaries. The

boundaries do not preserve all the symmetries of the bulk; in particular, the bulk SUSY is

broken by the following boundary conditions. For the gauge fields, we choose

Aa : (+,+) , λa : (+,−) ,

σa : (−,−) , λc
a : (−,+) , (2.5)

where the first (second) ± refers to the boundary condition at y = 0 (y = πR). “+”

means the field is allowed to freely fluctuate at the boundary, while “−” means the field is

constrained, i.e., not an independent degree of freedom at the boundary.1 These boundary

conditions only preserve the unprimed (primed) SUSY at y = 0 (y = πR). This is an

example of SUSY breaking by the Scherk-Schwarz mechanism [11 – 13]. Furthermore, notice

that only the SM gauge fields have zero modes, precisely in accord with the low-energy

spectrum of the scenario described in section 1.

For the A-type matter fields, we choose

φiA : (+,−) , ψiA : (+,+) ,

φc
iA : (−,+) , ψc

iA : (−,−) , (2.6)

1If we ignore boundary-localized terms, “+” and “−” would reduce to the usual Neumann and Dirichlet

boundary conditions, respectively, or “even” and “odd” in the orbifold language. But boundary terms are

important as we will see later.
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while for the B sector, we choose

φiB : (+,+) , ψiB : (+,−) ,

φc
iB : (−,−) , ψc

iB : (−,+) . (2.7)

Note that only ψiA (the SM fermions) and φiB (the pseudo-sfermions) have zero modes.

The φiB will acquire mass, but only radiatively. This again exactly realizes the low-energy

spectrum of our scenario.

Where should the Higgs be located? Note that, of the four bulk Z2 symmetries (2.1)-

(2.4), Z ′AB
2 is broken at y = 0 while ZAB

2 is broken at y = πR. In order to ensure the

desired form of the Yukawa couplings (1.1), it is crucial to sequester the Higgs from ZAB
2

breaking. Therefore, we must place the Higgs and the Yukawa couplings at y = 0. The

most general supersymmetric Yukawa couplings consistent with the unbroken ZA
2 , ZB

2 and

ZAB
2 are given by

Wy=0 =
∑

i,j,p

(
N

(u)
ij y

(u)
ij HuQipUjp +N

(d)
ij y

(d)
ij HdQipDjp +N

(ℓ)
ij y

(ℓ)
ij HdLipEjp

)
, (2.8)

where y
(u,d,ℓ)
ij are the SM Yukawa couplings, and N

(u,d,ℓ)
ij account for the normalizations of

the zero-mode wavefunctions:

N
(u)
ij ≡ 1

ξ
(0)
qiA

(0) ξ
(0)
ujA

(0)
etc., (2.9)

where ξ
(n)
qiA

(y) is the normalized n-th KK mode of qiA, etc. (We have also implicitly imposed

an R parity, which has the same charge assignments as in the MSSM for each of the fields

in A and B.)

The symmetries at y = 0 also allow brane-localized kinetic terms at this point. The

ZAB
2 symmetry ensures that the kinetic terms for the A and B fields have the same co-

efficient, and therefore the cancellation of the quadratic divergences arising from Yukawa

couplings is maintained. On the other hand, at the y = πR boundary, the only quadratic

terms allowed by ZA
2 , ZB

2 and Z ′AB
2 are the brane-localized kinetic terms for Φ′

iA and

Φc′
iB . Z ′AB

2 ensures that these two kinetic terms have the same coefficients, which again

guarantees the cancellation.

In summary, our choice of boundary conditions ensures that the only zero modes arising

from the bulk fields are the SM fermions from the A-sector, the pseudo-sfermions from the

B-sector, and the SM gauge bosons. The discrete symmetries relating the A and B fields

ensure that one loop quadratic divergences to the Higgs mass arising from loops involving

the SM fermions are cancelled by the pseudo-sfermions. What about loops involving the

gauge fields? The lightest gauginos have masses of order 1/2R. The fact that the above

boundary conditions break supersymmetry only non-locally ensures that contributions to

the Higgs mass from gauge loops are finite and cutoff at this scale. Provided that the

compactification scale 1/R is less than about 5-10 TeV, radiative corrections to the Higgs

mass from gauge loops are under control even though there is no fermion-pseudo-sfermion-

gaugino vertex. Therefore this model is a concrete realization of the scenario described in

section 1.
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2.3 The long-lived pseudo-sfermions

Now, as anticipated in the introduction, this model as it stands conserves B-baryon and

B-lepton numbers, implying that the lightest B scalars are necessarily stable. This is

incompatible with observation. To resolve this problem, we allow for small violations of

ZA
2 and ZB

2 by adding to (2.8) the following terms:

∆Wy=0 =
∑

i,j

(
N

(u)
ij y

(u)
ij ǫ

(u)
ij HuQiAUjB +N

(d)
ij y

(d)
ij ǫ

(d)
ij HdQiADjB +N

(ℓ)
ij y

(ℓ)
ij ǫ

(ℓ)
ij HdLiAEjB

)

+(A↔ B) , (2.10)

where ǫ
(u,d,ℓ)
ij are dimensionless parameters, and N

(u,d,ℓ)
ij are given in (2.9). Note that this

still preserves ZAB
2 , so the cancellation of the quadratic divergences in the squared Higgs

mass is not spoiled.

One technical remark is in order. Note that while there are no terms with a lower

dimension than those in (2.10) which can mix A and B while preserving ZAB
2 , brane-

localized kinetic mixing terms, such as Q†
iAe

2V QjB, have the same dimension. However,

unlike the mixed Yukawa couplings above, such terms do not affect the zero modes and

therefore do not give rise to decays of the light scalars. If we begin with such kinetic A-B

mixing but without the mixed Yukawas (2.10), then the mixed Yukawas would never be

induced, due to the non-renormalization theorem of superpotential. On the other hand,

if we begin with mixed Yukawas but without kinetic A-B mixing, it would be induced

radiatively. Since the only phenomenological relevance of the A-B mixings is to cause φ
(0)
iB

to decay, we neglect the brane-localized kinetic A-B mixings, which can self-consistently

be assumed to be suppressed by a loop factor with respect to the mixed Yukawa couplings.

2.4 The cutoff of the theory

Here we estimate the scales suppressing higher dimensional operators in our Lagrangian,

which we have neglected in our analysis up till now. In principle, locality allows three

separate scales, i.e. the cutoffs at y = 0, in the bulk, and at y = πR, which we denote by

Λ0, Λb, and ΛπR, respectively. We take the true cutoff of the model to be the lowest of

the three.

The most severely constrained is Λ0, because the brane-localized top Yukawa interac-

tions can rapidly become strong above 1/R due to the O(1) top Yukawa coupling, color

multiplicity, and the fact that the Higgs couples to both A and B fields. Since there is

no large or small number involved here, one might naively expect that Λ0 ∼ 1/R, i.e. no

significant gap between the compactification scale and the cutoff. Then the effects of higher

dimensional operators can potentially be large, invalidating the 5D effective field theory.

However, in estimating Λ0, it is crucial not to neglect the brane-localized kinetic terms,

because their effects are larger for the heavier KK modes which are important when ana-

lyzing the UV behavior. In terms of the dimensionless coefficient Z defined via

Lbrane kinetic =

∫
d4θ ZπRΦ†e2V Φ

∣∣∣
y=0

, (2.11)
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Figure 1: The cutoff Λ of the model as a function of Z.

a rough estimate of the cutoff Λ (= Λ0) as a function of Z (taken to be equal for Q3 and

U3 for simplicity) is plotted in figure 1. As one can see, the cutoff Λ0 can easily exceed

∼ O(10)/R for Z >∼ a few/10. This then becomes comparable to the bound on Λb from

gauge loops in the bulk, and there is no advantage to further raising Z.

The final check is to make sure that such values of Z do not significantly lower the

masses of the lightest KK fermions in the B sector, which would jeopardize our scenario.

The lightest KK B-fermion mass can be computed from (B.8) in appendix B, and one

finds that when varying Z from 0 to 0.25 the mass only decreases from 0.5/R to 0.4/R.

Therefore, we conclude that our 5D model with R−1 in the 5-10 TeV range provides a good

effective field theory realization of our scenario up to and beyond energies accessible to

the LHC.

One might wonder if the overall cutoff of the theory could be raised simply by warping

the 5D spacetime. This possibility is however difficult to reconcile with the Scherk-Schwarz

mechanism for supersymmetry breaking [14], which plays a crucial role in our construction.

2.5 The pseudo-sfermion spectrum

The one-loop gauge contributions to the squared soft mass of the scalar i are given by

δm2
i,gauge =

1

4π4R2

Kg(Zi)

1 + Zi

∑

G

g2
GC

(G)
2 (i) , (2.12)

where G = U(1)Y ,SU(2)L,SU(3)C, and gG and C
(G)
2 are respectively the gauge coupling

and the quadratic Casimir for the group G. Kg(Z) is an O(1) dimensionless integral:

Kg(Z) ≡
∫ ∞

0
dx
x2

[
2 − Z + Z3x2

2 + Z(1 + 2Z)x coth x
]

(4 + Z2x2) sinhx+ 4Zx coshx
.
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Figure 2: The functions Kg(Z)/(1 + Z) (solid curve) and (1 + Z)KY (Z) (dashed curve).

The combination Kg(Z)/(1 + Z) is represented in figure 2 by the solid curve.

For the third generation squarks, the one-loop contributions from the large top Yukawa

coupling are also important.

δm2
q̃3

=
y2

t

8π4R2
(1 + ZU3

)KY (ZU3
) ,

δm2
ũ3

=
y2

t

4π4R2
(1 + ZQ3

)KY (ZQ3
) , (2.13)

where

KY (Z) =

∫ ∞

0
dx

2x2

(4 + Z2x2) sinhx+ 4Zx cosh x
. (2.14)

The combination (1 + Z)KY (Z) is represented in figure 2 by the dashed curve.

2.6 The Higgs sector and electroweak symmetry breaking

There are a few points regarding the Higgs sector and electroweak symmetry breaking

which must be discussed. First, recall that the bulk possesses an SU(2)R symmetry, which

contains a U(1)R subgroup generated by rotations about the σ3 direction. In the convention

where the gauginos λ and λc have U(1)R charges +1 and −1, Φip and Φc
ip have U(1)R charges

+1 and −1, respectively, while Va and Σa have no U(1)R charge. The bulk also possesses a

global U(1) symmetry under which Φip and Φc
ip have charge −1/2 and +1/2 respectively.

The sum of this U(1) and the above U(1)R is also an R-symmetry, which we label U(1)R′ .

Then, the superpotential (2.8) is U(1)R′ invariant if Hu and Hd are assigned unit U(1)R′

charge. The µ-term δ(y)
∫
d2θ µHuHd also respects U(1)R′ . Therefore, as things stand, the

theory is U(1)R′ invariant, and a Bµ-term BµH̃uH̃d will not be generated.

– 8 –
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Therefore, in order to have realistic electroweak symmetry breaking, we must introduce

explicit U(1)R′ violation. It is also desirable to have additional contributions to the Higgs

quartic couplings to get a Higgs heavier than the LEP bound without too much tuning.

As shown in [5], both objectives can be simultaneously realized by introducing additional

SM singlets in the Higgs sector. Below, we summarize this analysis.

We extend the Higgs sector by adding to the theory an extra singlet S which is localized

to the brane at y = 0 and replaces the µ term δ(y)
∫
d2θ µHuHd by

δ (y)

∫
d2θ

[
αS + λSHuHd + κS3

]
. (2.15)

Now U(1)R′ is explicitly broken. The Higgs sector has no continuous global symmetries,

which ensures the absence of an unwanted Goldstone boson. The Higgsino mass, or the

µ term, will be supplied by the VEV of the scalar S. (The origin of the negative squared

mass for the scalar S will be discussed below.) The above superpotential also provides an

additional tree-level Higgs quartic coupling. For example, for tan β ∼ O(1) and λ >∼ 0.7,

the tree-level Higgs masses will be greater than the experimental lower bound. Such “large”

values of λ are allowed since the cutoff of the theory is low. We choose the value of α to be

of order weak scale size to obtain consistent electroweak breaking. This choice is technically

natural. We leave the problem of naturally generating α of this size for future work.

Now we are ready to compute the radiatively generated soft mass of the Higgs. First,

there is a one-loop contribution from gauge loops, given by the formula (2.12):

δm2
H |gauge =

2.1

4π4R2

(
3g2

2

4
+
g2
1

4

)
≃ 0.075

4π2
R−2 , (2.16)

where we have ignored ZH . (The values corresponding to nonzero ZH can be read off from

figure 2.) There is a two-loop contribution from top and stop loops where the stop masses

are generated at one loop given by the formulae (2.13) and (2.14), giving rise to

δm2
H |top ≃ − 3y2

t

4π2
m̃2

t log
R−1

m̃t
, (2.17)

where m̃2
t is the average of the left and right stop mass-squareds. Taking ZQ3

= ZU3
≡

Zt for simplicity, one finds that m̃2
t varies from 0.017R−2 to 0.012R−2 as Zt is varied

from 0 to 2. In this range the total δm2
H is negative, thereby triggering electroweak

symmetry breaking.

Finally, let us discuss the origin of a negative squared mass for the scalar in S. A

simple way to generate this is to introduce into the bulk two SM singlet hypermultiplets

P̂A and P̂B . The boundary conditions on these fields are such as to allow only a fermion

zero mode for each of P̂A and P̂B . The bulk ZAB symmetry interchanges P̂A and P̂B . In

addition, under the Z ′
AB symmetry, P̂A and P̂B are also interchanged. Then on the brane

at y = 0 we can write the interaction

δ (y)

∫
d2θ

[
λPSPAPB + µP

(
PA

2 + PB
2
)]

(2.18)
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The effect of the coupling λP is to generate a negative mass squared for the scalar in S

at one loop. Note that the theory possesses a Z2 symmetry under which PA → −PA and

PB → −PB while all other fields are invariant. Then, the lightest fermion in PA,B is stable

and therefore can be a viable dark matter candidate [15].

The extended Higgs sector has no impact on the essential aspects of the theory such

as the mechanism for cancellation of the one-loop quadratic divergences, or the lifetimes of

the long-lived pseudo-sfermions. Further, the new couplings introduced above do not affect

our estimate of the cutoff of the theory in section 2.4. The reason is that this estimate is

dominated by the behavior of the top Yukawa coupling, which rapidly grows strong above

1/R, whereas the new couplings in the Higgs sector need not run rapidly.

3. Collider phenomenology

Let us first contrast the phenomenology of this scenario with that of the MSSM (and

extensions of the MSSM that include additional singlets) with a similar spectrum. We

therefore consider a spectrum where the gauginos are heavy, at a few TeV, while the

sfermions and Higgsinos are at a few to several hundred GeV. We further specialize the case

where the Higgsino is the LSP. In the MSSM with such a spectrum, gauginos are not directly

accessible to the LHC. Therefore, sfermions predominantly decay to the corresponding SM

fermions and a Higgsino. These decays are prompt.

In stark contrast, in our scenario, the lightest pseudo-sfermions (i.e. the lightest pseudo-

squark and the three lightest e-, µ-, τ -type pseudo-sleptons) can decay only via the cou-

plings (2.10). Since these couplings break symmetries, it is technically natural for them

to be small. Therefore, these four lightest sfermions can be naturally long-lived or even

collider-stable!.

In our specific extra-dimensional construction, the form of the soft masses (2.12) implies

that SU(2) doublet pseudo-sfermions are heavier than the SU(2) singlet ones with the same

baryon, e-, µ-, or τ -number. Thus, the doublets will promptly decay to the corresponding

singlet scalars. Neglecting the masses of the decay products, the SU(2) singlet pseudo-

sfermions’ decay rates are given by

Γ−1 =

(
y2ε2

8π
m̃

)−1

≃ 50 µm
100 GeV

m̃

(
10−6

yε

)2

, (3.1)

where m̃ is the pseudo-sfermion mass, while yε represents the relevant combination of the

Yukawa coupling and the ε factors as in (2.10). For example, the pseudo-selectron could

have a displaced vertex for ε ∼ O(0.1) and tan β ∼ O(1). It is also possible that two

pseudo-sleptons of different generations both decay inside the detector. For example, for

ε ∼ O(10−3) and tanβ ∼ O(1), a pseudo-smuon will have a displaced vertex of about 100

µm, while a pseudo-selectron decays after travelling a meter or so.

Due to their large masses, these long-lived charged pseudo-sleptons hardly lose any

energy while coasting through the detecter material [16]. If the produced pair of the

pseudo-sleptons are collider-stable, we expect to see two highly-ionizing tracks. On the

other hand, if each decays into a SM fermion and a Higgsino in the detector, there will be
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two tracks with a kink. In this regard, our scenario shares some similarity with the slepton

co-NLSP scenario [17] in gauge mediation.

The long-lived pseudo-squarks, on the other hand, will hadronize into R-hadrons, which

may be neutral or charged. If charged, they will again appear as a highly-ionizing tracks,

although a neutral R-hadron can sometimes be converted to a charged one by interacting

with nucleons in the detector. Slow enough R-hadrons can be stopped [18], as in the case

of the long-lived gluino in Split Supersymmetry [19].

Note that these signals are quite robust expectations of our low-energy scenario de-

scribed in section 1, independent of the details of any particular UV completion, and should

make this scenario straightforward to distinguish at the LHC.
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A. Boundary conditions with boundary-localized kinetic terms

We analyze a massless bulk fermion with a brane-localized kinetic term at the y = 0

boundary. First, consider the contribution to the 4D action from the 5D bulk kinetic term:

L4D ≡
∫ πR

0
dy Lbulk kin. (Naive), (A.1)

where

Lbulk kin. = ψ p · σ̄ψ + ψcp · σψc
+

1

2
[ψc∂yψ − (∂yψ

c)ψ + h.c.] . (A.2)

(We have carefully distributed ∂y such that Lbulk kin. is real without integration by parts.)

The reason that (A.1) is “naive” is the following. From the equations of motion in the bulk

p · σ̄ψ − ∂yψ
c

= 0 ,

p · σψc
+ ∂yψ = 0 , (A.3)

we expect that L4D can depend on only two of the four variables ψ(0), ψc(0), ψ(πR), and

ψc(πR). For example, when ψ and ψc have the A-type boundary conditions ((+,+) and

(−,−) respectively), L4D by definition should only depend on ψ(0) and ψ(πR). Thus,

δL4D should only contain δψ(0) and δψ(πR). Similarly, when ψ and ψc have the B-type

boundary conditions ((+,−) and (−,+) respectively), δL4D should only depend on δψ(0)

and δψc(πR). However, notice that the variation of (A.1) is

δL4D =
1

2
[ψcδψ − δψc ψ + h.c.]

∣∣∣∣
y=πR

y=0

(A.4)
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which depends on all of δψ(0), δψc(0), δψ(πR), and δψc(πR).

We usually fix this problem by hand by imposing the boundary condition ψc(0) =

ψc(πR) = 0 for the A-type, or ψc(0) = ψ(πR) = 0 for the B-type. This is analogous to

imposing constraints by hand when solving a constrained mechanical system. Alternatively,

we can let mathematics take care of the constraints by adding Lagrange multipliers. In our

case, a suitable mathematical trick is to add to (A.1) the following terms: for the A-type

L(A)
4D ≡

∫ πR

0
dy Lbulk kin. +

1

2
[−ψcψ(0) + ψcψ(πR) + h.c.] (Correct) ,

while for the B-type

L(B)
4D ≡

∫ πR

0
dyLbulk kin. +

1

2
[−ψcψ(0) − ψcψ(πR) + h.c.] (Correct)

Then, instead of (A.4), we now obtain

δL(A)
4D = −ψcδψ(0) + ψcδψ(πR) + h.c. , (A.5)

and

δL(B)
4D = −ψcδψ(0) − δψcψ(πR) + h.c. . (A.6)

Note that (A.5) shows that L(A)
4D is a function of only ψ(0) and ψ(πR) as it should be. In

the absence of other terms at the boundaries, demanding that δL(A)
4D vanish for arbitrary

variations gives us the usual boundary conditions ψc(0) = ψc(πR) = 0, which, together

with the equations of motion (A.3), further implies that ∂yψ(0) = ∂yψ(πR) = 0. This is

what we would have got in the orbifold language by assigning (+,+) and (−,−) parities to

ψ and ψc respectively. Similarly, demanding that the variation (A.6) vanish is equivalent

to assigning (+,−) and (−,+) parities to ψ and ψc.

The advantage of using L(A)
4D and L(B)

4D becomes clear once there are extra terms at the

boundaries. For example, consider the A-type case and let us add a boundary-localized

kinetic term at y = 0:

L(A)
Z = L(A)

4D + ZπRψ p · σ̄ψ(0) . (A.7)

Then, extremizing L(A)
Z readily give us

ψ
c
(0) = ZπRp · σ̄ψ(0) ,

ψc(πR) = 0 . (A.8)

Combining these with the equations of motion (A.3), we obtain

∂yψ(0) = −ZπRp2ψ(0) ,

∂yψ(πR) = 0 , (A.9)

and

ZπR∂yψ
c(0) = ψc(0) ,

ψc(πR) = 0 . (A.10)
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These are the correct boundary conditions for the A-type fermion with a brane-localized

kinetic term at y = 0.

Similarly, for the B-type fermion, extremizing

L(B)
Z = L(B)

4D + ZπRψ p · σ̄ψ(0) (A.11)

gives

ψ
c
(0) = ZπRp · σ̄ψ(0) ,

ψ(πR) = 0 , (A.12)

which, combined with (A.3), implies

∂yψ(0) = −ZπRp2ψ(0) ,

ψ(πR) = 0 , (A.13)

and

ZπR∂yψ
c(0) = ψc(0) ,

∂yψ
c(πR) = 0 . (A.14)

These are the correct boundary conditions for the B type fermion with a brane-localized

kinetic term at y = 0.

Of course, one could re-derive all of the above results in the orbifold language, but

must be careful in doing so, because, at the y = 0 brane, “odd” fields jump while even

fields have a kink. So, the usual advantage of the orbifold language, namely the simple

relation between the parity of a field and its boundary condition, is lost.

Although the above analysis was done for fermions, it should be obvious that, by

supersymmetry, bulk scalars with (+,+), (−,−), (+,−), and (−,+) parities obey the

same boundary conditions, (A.9), (A.10), (A.13), and (A.14), respectively.

B. The KK modes

We expand an A-type 5D fermion field as

ψ(p, y) =
∑

n

ξ++
n (y)ψn(p) ,

ψc(p, y) =
∑

n

ξ−−
n (y)ψc

n(p) , (B.1)

where Ψn ≡ (ψn, ψ
c
n) satisfies the 4D Dirac equation /pΨn = mnΨn. Then, the 5D Dirac

equation (A.3) implies that both ξ(y)’s satisfy the bulk equation of motion (m2
n+∂2

y)ξn(y) =

0 in the interval 0 < y < πR. The boundary conditions for ξ++
n and ξ−−

n are given by

(A.9) and (A.10), respectively. It is trivial to repeat the exercise for the B-type fermion

and also for scalars.
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The solutions for the (+,+) and (−,−) modes are then given by
{
ξ
(++)
0 (y) = 1/

√
πR(1 + Z)

ξ
(++)
n (y) = N(m±±

n ) cos[m±±
n (y − πR)]

(B.2)

ξ(−−)
n (y) = N(m±±

n ) sin[m±±
n (y − πR)] , (B.3)

where n = 1, 2, 3, . . ., while for the (+,−) and (−,+) modes

ξ(+−)
n (y) = N(m±∓

n ) sin[m±∓
n (y − πR)] , (B.4)

ξ(−+)
n (y) = −N(m±∓

n ) cos[m±∓
n (y − πR)] , (B.5)

where again n = 1, 2, 3, · · · . The corresponding KK masses and normalization factors are

given by

m++
0 = 0 , (B.6)

ZπRm±±
n = − tan(m±±

n πR) , (B.7)

ZπRm±∓
n = cot(m±∓

n πR) , (B.8)

and

N(m) =

√
2

πR

(
1 +

Z

1 + (ZπRm)2

)−1/2

. (B.9)

As they should be, all these modes are orthonormal. Note that, because of the brane-

localized kinetic term, the appropriate inner-products are

〈f |g〉 = ZπRf∗(0) g(0) +

∫ πR

0
f∗(z) g(z) dz , (B.10)

for the “(+,+)” and “(+,−)” fields, while

〈f |g〉 =

∫ πR

0
f∗(z) g(z) dz , (B.11)

for the “(−,+)” and “(−,−)” types.

C. The propagators

First, consider four massless bulk scalars φαα′ with α,α′ = ±,±. First, all four of them

satisfy the bulk equation of motion (p2 + ∂2
y)φαα′(p, y) = 0 in the interval 0 < y < πR, so

all the propagators satisfy

(p2 + ∂2
y + iǫ)Gαα′(y, y′; p) = iδ(y − y′) (C.1)

in this interval. Then, viewing Gαα′(y, y′; p) as a function of y, it satisfies (A.9), (A.10),

(A.13), and (A.14) for (α,α′) = (+,+), (−,−),(+,−), and (−,+), respectively. For exam-

ple,

∂yG++(y, y′; p)
∣∣
y→0

= −ZπRp2G++(y, y′; p)
∣∣
y→0

,

∂yG++(y, y′; p)
∣∣
y→πR

= 0 . (C.2)
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Solving these, we obtain

G++(y, y′, p;Z) = − i cosh[pE(y> − πR)]
(
cosh[pEy<] + ZπRpE sinh[pEy<]

)

pE

(
sinh[pEπR] + ZπRpE cosh[pEπR]

) , (C.3)

where pE ≡ (−p2 − iǫ)1/2, and y> and y< are respectively the larger and the smaller of y

and y′. Similarly, we have

G−−(y, y′, p;Z) =
i sinh[pE(y> − πR)]

(
sinh[pEy<] + ZπRpE cosh[pEy<]

)

pE

(
sinh[pEπR] + ZπRpE cosh[pEπR]

) , (C.4)

G+−(y, y′, p;Z) =
i sinh[pE(y> − πR)]

(
cosh[pEy<] + ZπRpE sinh[pEy<]

)

pE

(
cosh[pEπR] + ZπRpE sinh[pEπR]

) , (C.5)

G−+(y, y′, p;Z) = − i cosh[pE(y> − πR)]
(
sinh[pEy<] + ZπRpE cosh[pEy<]

)

pE

(
cosh[pEπR] + ZπRpE sinh[pEπR]

) . (C.6)

Using these scalar propagators, we can also write down the propagators for fermions.

For the A-type fermion, we have chirality-preserving propagators

〈
ψα(y)ψβ̇(y′)

〉
(p) = p·σαβ̇ G++(y, y′, p;Z) ,

〈
ψ

cα̇
(y)ψcβ(y′)

〉
(p) = p·σ̄α̇β G−−(y, y′, p;Z) , (C.7)

and chirality-flipping propagators

〈
ψα(y)ψcβ(y′)

〉
(p) = δβ

α ∂yG−−(y, y′, p;Z) ,
〈
ψ

cα̇
(y)ψβ̇(y′)

〉
(p) = −δα̇

β̇
∂yG++(y, y′, p;Z) , (C.8)

where 〈· · · 〉(p) denotes the time-ordered correlation function in the mixed momentum-

position representation. Similarly, for the B-type fermion, we have

〈
ψα(y)ψβ̇(y′)

〉
(p) = p·σαβ̇ G+−(y, y′, p;Z) ,

〈
ψ

cα̇
(y)ψcβ(y′)

〉
(p) = p·σ̄α̇β G−+(y, y′, p;Z) , (C.9)

and

〈
ψα(y)ψcβ(y′)

〉
(p) = δβ

α ∂yG−+(y, y′, p;Z) ,
〈
ψ

cα̇
(y)ψβ̇(y′)

〉
(p) =−δα̇

β̇
∂yG+−(y, y′, p;Z) (C.10)

D. Computation of the soft masses

D.1 Gauge contributions

We ignore the brane-localized kinetic terms for the gauge fields for simplicity, as they have

little relevance to the phenomenology we are concerned with in this paper. The relevant

bulk gauge interactions involving the zero mode of the B scalar are

Lbulk = −
√

2g5D
(
φ†BλψB − φBλ

cψc
B

)

⊃ −
√

2g√
1 + Z

(
φ

(0)†
B λψB − φ

(0)
B λcψc

B

)
, (D.1)
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where the relation g = g5D/
√
πR was used in the second line.

Then, the one-loop contribution to the squared soft mass of φ
(0)
B from bulk fermion

loops is then given by

−2ig2C2

1 + Z

∫
dy

∫
dy′

∫
d4p

(2π)4
(D.2)

(
−tr[p·σ p·σ̄]

[
G+−(y, y′, p;Z)G+−(y, y′, p; 0)+G−+(y, y′, p;Z)G−+(y, y′, p; 0)

]

+tr[1]
[
∂yG+−(y, y′, p;Z) ∂yG+−(y, y′, p; 0)+∂yG−+(y, y′, p;Z) ∂yG−+(y, y′, p; 0)

])

=
4g2C2

1 + Z

∫
dy

∫
dy′

∫
d4pE

(2π)4(
p2

E

[
G+−(y, y′, p;Z)G+−(y, y′, p; 0) +G−+(y, y′, p;Z)G−+(y, y′, p; 0)

]

+∂yG+−(y, y′, p;Z) ∂yG+−(y, y′, p; 0) + ∂yG−+(y, y′, p;Z) ∂yG−+(y, y′, p; 0)

)
,

where pE ≡ (−p2 − iε)1/2. The first term is from the loop of ψ and λ, while the second

from ψc and λc. These do not contain chirality flips, and therefore the propagators (C.9)

have been used. The third and forth terms come from the diagrams containing chirality

flips, thus the propagators (C.10) have been used.

The bosonic contribution can be calculated by the following trick. Imagine changing

the boundary conditions for the fermions such that supersymmety is preserved. In this

situation, we know that the bosonic and fermionic contributions cancel with each other.

Since we did not change the boundary conditions for the bosons when switching from non-

supersymmetric to supersymmetric case, the bosonic contribution stays the same. Thus,

the bosonic contribution in the case of our interest is just the negative of the fermionic

contribution in the supersymmetric case, i.e.,

−(D.2) with “+−” → “++” and “−+” → “−−”. (D.3)

Adding (D.2) and (D.3) gives the squared soft mass from the bulk gauge interactions.

We also have contributions from the boundary-localized gauge interactions

Lboundary = −ZπR
√

2g5D φ
†
BλψB

∣∣
y=0

⊃ −
√

2gZπR√
1 + Z

φ
(0)†
B λψB

∣∣
y=0

. (D.4)

Using the above trick to obtain the bosonic part, this gives the following contribution to

the squared soft mass:

4g2(ZπR)2C2

1 + Z

∫
d4pE

(2π)4
p2

E

[
G+−(0, 0, p;Z)G+−(0, 0, p; 0)

−G++(0, 0, p;Z)G++(0, 0, p; 0)
]
, (D.5)

Adding up (D.2), (D.3) and (D.5), we obtain the formula (2.12).
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D.2 Yukawa contributions

The relevant Yukawa couplings are

Lyukawa = −y5D h̃u(q3Bũ3B + q̃3Bu3B)

⊃ −yt

√
πR(1 + ZQ3

) h̃uq3Bũ
(0)
3B − yt

√
πR(1 + ZU3

) h̃uq̃
(0)
3Bu3B (D.6)

where

y5D = yt

√
πR(1 + ZQ3

)
√
πR(1 + ZU3

) . (D.7)

Then, again using the above trick to obtain the bosonic contribution, we get

δm2
q̃3

= y2
t πR(1 + ZU3

)

∫
d4p

(2π)4

(
−tr[p·σ p·σ̄]

p2 − µ2

[
G+−(0, 0, p;ZU3

) −G++(0, 0, p;ZU3
)
])

≃ 2y2
t πR(1 + ZU3

)

∫
d4pE

(2π)4

[
−iG+−(0, 0, p;ZU3

) + iG++(0, 0, p;ZU3
)
]
, (D.8)

where µ was neglected in the second step. This is the first equation of (2.13). Similarly,

we have

δm2
ũ3

≃ 4y2
t πR(1 + ZQ3

)

∫
d4pE

(2π)4

[
−iG+−(0, 0, p;ZQ3

) + iG++(0, 0, p;ZQ3
)
]
, (D.9)

which is the second equation of (2.13).
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